JOM 23483

Photoinduzierte Desalkylierungsreaktionen an Indenyl- und Fluorenylfunktionalisierten Cyclopentadienyltricarbonyl-Methylkomplexen des Molybdäns und Wolframs. Molekülstrukturen von $(\eta^5: \eta^1 - C_5H_4CMe_2C_9H_6)Mo(CO)_3, (\eta^5: \eta^1 - C_5H_4CMe_2C_{13}H_8)W(CO)_3$ und $[(\eta^5 - C_5H_4(CH_2)_3C_{13}H_9)W(CO)_3]_2$

Helmut G. Alt und Jung Su Han

Laboratorium für Anorganische Chemie, Universität Bayreuth, Postfach 10 12 51, W-8580 Bayreuth (Deutschland)

Robin D. Rogers

Department of Chemistry, Northern Illinois University, DeKalb, IL 60115 (USA) (Eingegangen den 12. November 1992)

Abstract

Upon photolysis the indenyl and fluorenyl functionalized cyclopentadienyl complexes $(\eta^5 \cdot C_5H_4CMe_2R)M(CO)_3Me$ (R = C_9H_7 (indenyl), $C_{13}H_9$ (fluorenyl); M = Mo, W) and $(\eta^5 \cdot C_5H_4CH_2)_3C_{13}H_9)W(CO)_3Me$ are dealkylated to give methane, the monomeric tricarbonyl complexes $(\eta^5 : \eta^1 \cdot C_5H_4CMe_2C_9H_6)M(CO)_3$ and $(\eta^5 : \eta^1 \cdot C_5H_4CMe_2C_{13}H_8)W(CO)_3$, and the dinuclear complex $[(\eta^5 \cdot C_5H_4CMe_2C_{13}H_9)W(CO)_3]_2$ (6). The molecular structures of $(\eta^5 : \eta^1 \cdot C_5H_4CMe_2C_9H_6)M(CO)_3$ and $(\eta^5 : \eta^1 \cdot C_5H_4CMe_2C_9H_6)M(CO)_3$.

Zusammenfassung

Die Photolyse der Indenyl- und Fluorenyl-funktionalisierten Cyclopentadienylkomplexe $(\eta^5 \cdot C_5 H_4 CMe_2 R)M(CO)_3 Me (R = C_9 H_7 (Indenyl), C_{13}H_9 (Fluorenyl); M = Mo, W)$ und $(\eta^5 \cdot C_5 H_4 (CH_2)_3 C_{13}H_9)W(CO)_3 Me$ in Lösung verläuft unter Bildung von Methan und den entsprechenden Tricarbonylkomplexen $(\eta^5 : \eta^1 \cdot C_5 H_4 CMe_2 R)M(CO)_3$ bzw. $[(\eta^5 \cdot C_5 H_4 (CH_2)_3 C_{13}H_9)W(CO)_3]_2$ (6). Die Molekülstrukturen von $(\eta^5 : \eta^1 \cdot C_5 H_4 CMe_2 C_9 H_6)Mo(CO)_3$ und $(\eta^5 : \eta^1 \cdot C_5 H_4 CMe_2 C_{13} H_8)W(CO)_3$ zeigen, daß die Indenylgruppe über den Fünfring und die Fluorenylgruppe über ein sechsgliedriges Ringsystem eine σ -Bindung zum Metall eingehen. Der Zweikernkomplex $[(\eta^5 \cdot C_5 H_4 (CH_2)_3 C_{13} H_9)W(CO)_3]_2$ (6) wird von einer relativ langen W–W-Bindung (3.2257(6) Å) zusammengehalten.

1. Einleitung

Die Photolyse der Cyclopentadienylkomplexe $C_5H_5M(CO)_3Me$ (M = Cr, Mo, W) in Lösung verläuft unter Desalkylierung, wobei vorwiegend Methan und die Zweikernkomplexe $[C_5H_5M(CO)_3]_2$ (M = Mo, W) und $[C_5H_5Cr(CO)_2]_2$ gebildet werden (vgl. [1,2]).

Matrixphotolysen lassen erkennen, daß der chemische Primärschritt in der Eliminierung eines CO-Liganden besteht [3,4]. Das dabei entstandene 16-Elektronen-Komplexfragment geht dann die Desalkylierungsreaktion ein, wobei der zur Methanbildung benötigte Wasserstoff vom Cyclopentadienylliganden, von einem anderen Methylliganden oder vom Solvens abstrahiert wird. Wir berichten in dieser Arbeit über Photolysereaktionen von Cyclopentadienyltricarbonylmethylkomplexen des Molybdäns und Wolframs, deren

Correspondence to: Prof. Dr. H.G. Alt or Prof. Dr. R.D. Rogers.

Komplex		\mathbf{IR}^{4}	and a final section of the	¹ H-NMR ¹		Ausbeute	MS	Fp.
		<i>p</i> (CO)	$\delta(C_5H_4)$	$\delta(C_{q}H_{7})$ bzw. $\delta(C_{q}H_{6})$ [/(H, H) in Hz]	δ (CMe ₂) bzw. δ (CH ₂) ₃ [J(H, H) in Hz]	(%)	+ W	(°C) (Zers.)
$(\eta^{5}; \eta^{1}-C_{5}H_{4}CMe_{2}C_{0}H_{6})Mo(CO)_{3}$ (in Aceton-d ₆)	(2a)	2028, 1956, 1941	6.57 (vt, 2) [4.6] 5.37 (vt, 2) [4.6]	7.28 (d, 1) [7.7], 7.22 (d, 1) [7.8] 7.10 (vt. 1) [5.3], 6.90 (vt, 2) [5.3] 3.37 (6.2)	1.64 (s, 6)	40	402	103
$(\eta^{5};\eta^{1}\text{-}\mathrm{C}_{5}\mathrm{H}_{4}\mathrm{CMe}_{2}(\mathrm{C}_{9}\mathrm{H}_{6})\mathrm{W}(\mathrm{CO})_{3}$	(2b)	2024, 1940, 1934	6.12 (vt, 2) [4.6] 5.29 (vt, 2) [4.5]	7.24 (d. 1) 7.24 (d. 1) 7.05 (vt, 2) [5.6], 6.92 (vt, 1) [5.7] 7.35 (c. 5)	1.85 (s, 6)	30	488	108
$[(\eta^5 \cdot C_5 H_4(CH_2)_3 C_{13} H_9)W(CO)_3]_2$	(9)	1937, 1886	5.22 (m, 8)	7.56 (dd. 4) [6.6/1.2]. 7.50 (dd. 4) 7.76 (dd. 4) [6.6/1.2]. 7.50 (dd. 4) [7.5/1.0], 7.34 (m. 8). 4.01 (t, 2) [5.7]	2.40 (t, 4) [7.8] 2.06 (m, 4) 1.34 (m, 4)	23	1022	(134)
^a (cm ⁻¹) in Pentanlösung. ^b ð(ppm) in C	D2C12	, bei $+ 25^{\circ}$ C (δ	rel. zu Restprotone	nsignal = 5.32).			and the second se	

Komplexe
der
Charakterisierung
-
TABELLE

166

TABELLE 2. ¹³C-NMR-Daten ^a

Komplex		$\delta(C_5H_4)$	$\delta(CMe_2)$ bzw. $\delta(CH_2)_3$	$\delta(C_9H_6)$ bzw. $\delta(C_{13}H_8)$	δ(M-CO)
$\overline{(\eta^5:\eta^1-C_5II_4CMe_2(C_9H_6)Mo(CO)_3}$ (in Aceton- d_{λ})	(2a)	129, 7, 91.9, 86.8	40.6, 21.4	151.1, 149.1, 146.1, 144.3 126.1, 123.0, 122.3, 116.5, 50.3	239.4, 227.5
$(\eta^5: \eta^1 - C_5 H_4 CMe_2(C_9 H_6) W(CO)_3$	(2b)	135.0, 89.7, 84.2	40.0, 26.6	149.2, 146.5, 145.0, 142.9 125.5, 122.6, 121.9, 115.6, 50.8	222.1, 216.5
$[(\eta^{5} - C_{5}H_{4}(CH_{2})_{3}C_{13}H_{9})W(CO)_{3}]_{2}$	(6)	111.0, 93.7, 89.5	32.9, 29.6, 28.7	160.8, 147.5, 127.4, 127.3 124.7, 120.1, 47.5	223.5, 215.4

^a δ (ppm) in CD₂Cl₂, bei + 25°C (δ rel. zu Lösungsmittelsignal = 53.8).

Cyclopentadienylligand einen 1,1-Dimethyl-1-indenylbzw. 1,1-Dimethyl-1-fluorenylsubstituenten trägt.

2. Ergebnisse und Diskussion

2.1. Photolysereaktionen der Komplexe $(\eta^5 - C_5 H_4 CMe_2 C_9 H_7)M(CO)_3Me$ (M = Mo, W), $(\eta^5 - C_5 H_4 CMe_2 C_{13} H_9)M(CO)_3Me$ und $(\eta^5 - C_5 H_4 (CH_2)_3 C_{13} H_9)W(CO)_3$ Me in Lösung

Die Photolyse der Komplexe **1a,b** bzw. **3a,b** in Toluollösung führt zu den monomeren Produkten **2a,b** bzw. **4a,b** (Gln. (1), (2)).

Der zur Methanbildung benötige Wasserstoff wird selektiv von der *ortho*-Position des Fünfrings des Indenylsubstituenten bzw. der 1-Position des Fluorenylsubstituenten abstrahiert. Molekülmodelle zeigen, daß sich diese Positionen sehr dem Methylliganden nähern, wenn der jeweilige Cyclopentadienylsubstituent um seine -CMe₂R (R = Indenyl, Fluorenyl) Achse rotiert. Auffällig ist dabei, daß die Indenylgruppe nur über den Fünfring eine σ -Bindung zum Metall ausbildet.

Einen ganz anderen Verlauf nimmt die Photolysereaktion, wenn der Komplex η^{5} -C₅H₄(CH₂)₃-C₁₃H₉W(CO)₃Me eingesetzt wird (Gl. (3)):

Es erfolgt zwar ebenfalls Desalkylierung, aber als metallorganisches Produkt wird ein Dimeres gebildet. Offenbar bewirkt die C₃-Brücke diesen unterschiedlichen Reaktionsverlauf. Modelluntersuchungen zeigen, daß der Fluorenylsubstituent des Fragments (η^5 -C₅H₄-(CH₂)₃C₁₃H₉)W(CO)₃ durchaus in die "Reichweite" des Metalls gelangen kann; eine solche Annäherung wird aber aufgrund der freien Rotations-möglichkeit der C-C-Bindungen um die drei Brücken-C-Atome sehr unwahrscheinlich und das Komplexfragment bevorzugt daher eine intermolekulare Stabilisierung in Form einer Dimerisierung. Die Photodesalkylierung von 5 gleicht somit der der unsubstituierten Komplexe (η^5 -C₅H₄)M(CO)₃Me [5,6].

3. Spektroskopische Charakterisierung der Komplexe 2a, 2b und 6

Die Ausgangsverbindungen **1a,b**, **3a,b** und **5** sowie die Produkte **4a**, **b** wurden erst kürzlich charakterisiert [7,8]. Alle übrigen Komplexe wurden IR-, ¹H-NMR-, ¹³C-NMR- und massenspektroskopisch charakterisiert (vgl. Tab. 1 und 2).

3.1. ¹H-NMR-Spektren

In den monomeren Komplexen **2a,b** ist der Indenyl substituent planar und "schneidet" das restliche Komplexfragment in zwei Spiegelbilder. Demzufolge erscheinen die C_5H_4 -Protonen als AA'BB'-Spinsystem und die beiden Methylsubstituenten in der Brücke ergeben nur ein Signal. Der Indenylsubstituent zeigt für jede Position unterschiedlich abgeschirmte Protonen; lediglich die beiden aliphatischen Protonen im Fünfring sind isotop.

3.2. ¹³C-NMR-Spektren

Die ¹³C-NMR-Spektren liefern analoge Aussagen wie die ¹H-NMR-Spektren. Aufgrund der Spiegelebene in den Molekülen von **2a**, **b** vereinfacht sich das Spektrum: Die C_5H_4 -C-Atome ergeben drei Signale, wobei das am stärksten entschirmte dem quartären C-Atom zuzuordnen ist. Von den drei CO-Liganden kommt das bei höherem Feld den beiden isotopen CO-Liganden zu. Der asymmetrische Indenylring zeigt naturgemäß für jedes C-Atom ein separates Signal.

3.3. Molekülstrukturen von $(\eta^5; \eta^4 - C_5 H_4 CMe_2 C_9 H_6) - Mo(CO)_3$ (2a), $(\eta^5; \eta^4 - C_5 H_4 CMe_2 C_{13} H_8) W(CO)_3$ (4b) und $[(\eta^5 - C_5 H_4 (CH_2)_3 C_{13} H_9) W(CO)_3]_2$ (6)

Der monomere Komplex **2a** besitzt die in Abb. 1 dargestellte Struktur. Die Bindungsabstände und -winkel sind in Tab. 3 angegeben. Der Mo-C(13)-Abstand beträgt 2.20(2) Å und ist deutlich kürzer als der Mo-CH₃-Abstand in der Ausgangsverbindung (η^5 -C₅H₄CMe₂C₁₃H₉)Mo(CO)₃Me (2.31(1) Å) [8] bzw. der Mo-Indenyl-Abstand (2.332(7) bzw. 2.375(8) Å) im π -Komplex (η^5 : η^2 -C₅H₄CMe₂C₉H₇)Mo(CO)₂Me [8]. Die C+C-Abstände im Indenyl-Fünfring zeigen. daß

TABELLE 3. Bindungsabstände (Å) und -winkel (°) für $(\eta^5; \eta^1 - C_5H_4CMe_2C_9H_6)Mo(CO)$, (2a) (Cent = Zentrum des Cyclopentadienylrings)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\overline{M_0 - C(1)}$	1.08(2)	$M_{\odot} = C(2)$	2 (1/1/ 2)	
MO = C(5) $2.3(2)$ $MO = C(4)$ $2.3(2)$ $MO = C(5)$ $2.3(2)$ $MO = C(4)$ $2.3(2)$ $MO = C(7)$ $2.3(2)$ $MO = C(6)$ $2.3(2)$ $MO = C(13)$ $2.2(2)$ $O(1) - C(1)$ $1.3(3)$ $O(2) - C(2)$ $1.14(3)$ $O(1) - C(1)$ $1.3(3)$ $O(2) - C(2)$ $1.14(3)$ $C(3) - C(1)$ $1.3(3)$ $C(4) - C(5)$ $1.49(3)$ $C(0) - C(1)$ $1.5(3)$ $C(7) - C(8)$ $1.44(3)$ $C(8) - C(1)$ $1.5(3)$ $C(12) - C(10)$ $1.5(2)$ $C(12) - C(13)$ $1.5(3)$ $C(12) - C(10)$ $1.5(2)$ $C(13) - C(10)$ $1.5(3)$ $C(12) - C(20)$ $1.5(2)$ $C(13) - C(10)$ $1.5(3)$ $C(17) - C(18)$ $1.5(3)$ $C(18) - C(10)$ $1.5(3)$ $C(13) - C(20)$ $1.4(3)$ $C(18) - C(13)$ $1.5(3)$ $C(17) - C(18)$ $1.5(3)$ $C(18) - C(13)$ $1.5(3)$ $C(17) - C(18)$ $1.5(2)$ $C(18) - C(10)$ $1.4(3)$ $C(13) - C(20)$ $1.5(3)$ $C(18) - C(13)$ $1.5(3)$	$M_0 = C(3)$	2.00(2)	$M_{\rm H} = C(1)$	2.000,20	
Ab = C(5) $2.54(2)$ $Ab = C(6)$ $2.54(2)$ $Ma = C(7)$ $2.30(2)$ $O(1) = C(8)$ $2.54(2)$ $Ma = C(13)$ $2.20(2)$ $O(1) = C(1)$ 1.163 $C(4) = C(3)$ $1.14(3)$ $O(3) = C(3)$ $1.11(3)$ $C(4) = C(3)$ $1.49(3)$ $C(4) = C(8)$ $1.33(4)$ $C(7) = C(3)$ $1.44(3)$ $C(8) = C(13)$ $1.59(2)$ $C(7) = C(3)$ $1.44(3)$ $C(9) = C(13)$ $1.57(3)$ $C(9) = C(10)$ $1.59(2)$ $C(12) = C(13)$ $1.57(3)$ $C(12) = C(20)$ $1.59(2)$ $C(13) = C(13)$ $1.57(3)$ $C(12) = C(20)$ $1.47(3)$ $C(16) = C(17)$ $1.37(3)$ $C(15) = C(20)$ $1.47(3)$ $C(16) = C(17)$ $1.37(3)$ $C(15) = C(20)$ $1.37(3)$ $C(11) = Ma = C(13)$ 78.609 $C(15) = C(10)$ $1.37(3)$ $C(11) = Ma = C(13)$ 78.60 $C(1) = Ma = C(1)$ $1.37(3)$ $C(11) = Ma = C(13)$ 78.60 $C(1) = Ma = C(1)$ $1.37(3)$ $C(11) = Ma = C(13)$ 78.60 $C(1) = Ma = C(1)$ $1.37(3)$ $C(11)$	$M_0 = C(5)$	2.00(2)	$M_{10} = C_1(4)$	2.31(2)	
MO-C(3) $2.50(2)$ $MO-C(3)$ $2.5(2)$ $O(2)-C(2)$ $1.14(3)$ $O(3)-C(3)$ $1.11(3)$ $O(2)-C(2)$ $1.14(3)$ $O(3)-C(3)$ $1.5(3)$ $O(2)-C(3)$ $1.34(3)$ $O(4)-C(8)$ $1.43(4)$ $O(2)-C(3)$ $1.34(3)$ $O(4)-C(7)$ $1.26(3)$ $O(7)-C(8)$ $1.44(3)$ $O(9)-C(1)$ $1.57(3)$ $O(9)-C(10)$ $1.59(2)$ $O(13)-C(14)$ $1.49(2)$ $O(1)-C(20)$ $1.59(2)$ $O(13)-C(14)$ $1.49(2)$ $O(1)-C(10)$ $1.59(2)$ $O(13)-C(14)$ $1.49(2)$ $O(1)-C(20)$ $1.59(2)$ $O(13)-C(13)$ $1.57(3)$ $O(1)-C(20)$ $1.47(3)$ $O(16)-C(17)$ $1.57(3)$ $O(1)-C(13)$ $1.37(3)$ $O(16)-C(17)$ $1.57(3)$ $O(1)-C(2)$ 81.49 $O(16)-C(13)$ $78.6(9)$ $O(1)-C(2)$ 81.49 $O(1)-Mo-C(3)$ $78.6(9)$ $O(2)-Mo-C(3)$ $1032(9)$ $O(1)-Mo-C(13)$ 188.277 $O(2)-Mo-C(3)$ $1032(9)$ $O(3)-Mo-C(13)$ $178(2)$ $O(2)-Mo-C(3)$	$M_0 = C(7)$	2.20(2)	MOC(B)	2.52(2)	
A0-C(13) $2A(2)$ $O(1-C(1)$ $(1,3)(3)$ $C(1-C(3)$ $1.14(3)$ $O(3-C(3)$ $1.11(3)$ $C(4)-C(5)$ $1.40(3)$ $C(4)-C(8)$ $1.43(4)$ $C(7)-C(3)$ $1.44(3)$ $C(8)-C(1)$ $1.59(2)$ $C(7)-C(3)$ $1.44(3)$ $C(8)-C(1)$ $1.57(3)$ $C(1)-C(1)$ $1.59(2)$ $C(12)-C(13)$ $1.57(3)$ $C(1)-C(2)$ $1.59(2)$ $C(13)-C(14)$ $1.49(2)$ $C(1)-C(20)$ $1.59(2)$ $C(13)-C(14)$ $1.49(2)$ $C(11)-C(20)$ $1.59(2)$ $C(13)-C(14)$ $1.49(2)$ $C(1)-C(20)$ $1.47(3)$ $C(15)-C(16)$ $1.59(3)$ $C(1)-C(20)$ $1.47(3)$ $C(16)-C(17)$ $1.57(3)$ $C(1)-C(20)$ $1.47(3)$ $C(16)-C(17)$ $1.57(3)$ $C(1)-C(20)$ $1.57(3)$ $C(18)-C(13)$ $75,8(9)$ $C(2)-Mo-C(3)$ $103,209$ $C(1)-Mo-C(13)$ $75,8(7)$ $Mo-C(1)-C(3)$ $103,209$ $C(1)-Mo-C(13)$ $75,8(7)$ $Mo-C(1)-C(3)$ $107(2)$ $C(5)-C(6)-C(7)$ $111(2)$ $C(6)-C($	MO = C(17)	2.30(2)	MO = C(8)	2.35(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2) = C(2)	2.20(2)	O(1) = O(1)	(.15(3)	
$\begin{array}{c} C(4) = C(3) & (-1)^{1}C(3) & (-1)^{1}C(3) & (-1)^{1}C(3) & (-1)^{1}C(3) \\ C(5) = C(6) & (-1)^{2}C(3) & (-1)^{1}C(3) & (-1)^{1}C(3) \\ C(7) = C(10) & (-1)^{1}C(3) & (-1)^{1}C(3) & (-1)^{1}C(3) \\ C(9) = C(11) & (-1)^{1}C(3) & (-1)^{1}C(3) & (-1)^{1}C(3) \\ C(12) - C(12) & (-1)^{1}C(3) & (-1)^{1}C(13) & (-1)^{1}C(3) \\ C(12) - C(20) & (-1)^{1}C(3) & C(13) - C(14) & (-1)^{1}C(3) \\ C(15) - C(20) & (-1)^{1}C(3) & C(15) - C(16) & (-1)^{1}C(3) \\ C(15) - C(20) & (-1)^{1}C(3) & C(16) - C(17) & (-1)^{1}C(3) \\ C(15) - C(20) & (-1)^{1}C(3) & C(16) - C(17) & (-1)^{1}C(3) \\ C(19) - C(20) & (-1)^{1}C(3) & C(16) - C(13) & 78,6(9) \\ C(1) - Mo - C(12) & (-1)^{1}C(3) & (-1)^{1}C(3) & (-1)^{1}C(3) \\ C(2) - Mo - C(13) & 72,0(9) & C(1) - Mo - C(13) & 78,7(7) \\ C(2) - Mo - C(13) & 72,0(9) & C(1) - Mo - C(13) & 77,8(7) \\ Mo - C(1) - C(1) & (-1)^{1}C(2) & (-1)^{1}C(2) - C(3) - Mo - C(13) & 77,8(7) \\ Mo - C(1) - C(1) & (-1)^{1}C(2) & C(3) - C(4) - C(8) & (-1)^{1}C(2) \\ C(4) - C(3) - C(3) & (-1)^{1}C(2) & C(5) - C(4) - C(8) & (-1)^{1}C(2) \\ Mo - C(3) - O(3) & (-1)^{1}C(2) & C(4) - C(8) & (-1)^{1}C(1) \\ C(4) - C(5) - C(4) & (-1)^{1}C(2) & C(6) - C(7) & (-1)^{1}C(2) \\ C(4) - C(6) - C(7) & (-1)^{1}C(2) & C(6) - C(7) & (-1)^{1}C(2) \\ C(4) - C(6) - C(10) & (-1)^{2}C(2) & C(6) - C(12) & (-1)^{1}C(2) \\ C(4) - C(6) - C(10) & (-1)^{2}C(2) & C(6) - C(12) & (-1)^{1}C(2) \\ C(4) - C(6) - C(10) & (-1)^{1}C(2) & C(6) - C(12) & (-1)^{1}C(2) \\ C(4) - C(4) - C(4) & (-1)^{1}C(1) & C(4) - C(3) - C(12) & (-1)^{1}C(3) \\ C(10) - C(9) - C(12) & (-1)^{1}C(1) & C(11) - C(9) - C(12) & (-1)^{1}C(3) \\ C(13) - C(14) & (-1)^{1}C(1) & C(14) - C(15) - C(16) & (-1)^{1}C(3) \\ C(13) - C(14) - C(15) & (-1)^{1}C(1) & C(14) - C(15) - C(16) & (-1)^{1}C(3) \\ C(13) - C(14) - C(15) & (-1)^{1}C(1) & C(14) - C(15) - C(16) & (-1)^{1}C(3) \\ C(13) - C(14) - C(15) & (-1)^{1}C(1) & (-1)^{1}C(2) \\ C(13) - C(14) & (-1)^{1}C(2) & (-1)^{1}C(2) & (-1)^{1}C(2) \\ C(13) - C(12) & (-1)^{1}C(2) & (-1)^{1}C(2) & (-1)^{1}C(2) \\ C(13) - C(13) & (-1)^{1}C(2) & (-1)^{1}C(2) & (-1)^{1}C(2) \\ C(13) -$	C(1) = C(1)	1.14(3)	O(3) - O(3)	1,11(5)	
CD=Ch0 1.52(5) (16)-(17) 1.54(3) CTD=CR0 1.44(3) CR0-C(10) 1.57(3) CR0=C110 1.49(3) CP0-C(11) 1.57(3) CR0=C120 1.53(2) C(13)-C(13) 1.37(3) CR12-C200 1.50(2) C(13)-C(14) 1.49(5) CR14 CR15 1.47(3) C(16)-C(17) 1.53(3) CR15-C200 1.41(3) C(16)-C(17) 1.53(3) CR15-C200 1.41(3) C(16)-C(17) 1.53(3) CR15-C200 1.41(3) C(16)-C(17) 1.53(3) CR15-C200 1.47(3) C(16)-C(17) 1.53(3) CR15-C200 1.57(3) C(16)-C(17) 1.53(3) CR15-C200 1.57(3) C(16)-C(13) 78,619 C(17)-C(18) 1.57(2) Mo-C(2)-O(2) 175(2) Mo-C(10)-O(1) 177(2) Mo-C(2)-O(2) 175(2) Mo-C(10)-O(1) 177(2) Mo-C(2)-O(2) 107(2) C(4)-C(5)-C60 107(2) C(5)-C(6)-C(7) 111(2) C(6)-C7)-C18 110(2) C(8)-C(9)-C(19) 199(1) C(10)-	C(4) = C(5)	1,49(3)	C(4) = C(8)	1,43(4)	
C(D)=C(10) 1.44(.3) C(8)=C(9) 1.59(.2) C(9)=C(10) 1.49(.3) C(12)=C(13) 1.37(.3) C(12)=C(12) 1.53(.2) C(13)=C(14) 1.49(.2) C(14)=C(15) 1.47(.3) C(15)=C(16) 1.36(.3) C(15)=C(20) 1.41(.3) C(16)=C(17) 1.37(.3) C(15)=C(20) 1.41(.3) C(16)=C(17) 1.37(.3) C(17)=C(18) 1.37(.3) C(16)=C(17) 1.37(.3) C(10)=Mo=C(2) 81.1(9) C(1)=Mo=C(13) 78.6(9) C(12)=Mo=C(13) 72.0(9) C(3)=Mo=C(13) 78.6(9) C(2)=Mo=C(13) 72.0(9) C(3)=Mo=C(13) 78.6(9) C(2)=Mo=C(13) 72.0(9) C(3)=C(10) 175(.2) Mo=C(10)=O(1) 177(.2) Mo=C(2)=O(2) 175(.2) Mo=C(1)=O(1) 177(.2) C(6)=C(7) 111(.2) C(4)=C(8)=C(9) 127(.2) C(6)=C(10) 129(.2) C(4)=C(8)=C(9) 127(.2) C(6)=C(11) 100(.1) C(4)=C(8)=C(9) 127(.2) C(8)=C(9)=C(11) 100(.1) C(10)=C(2)=C(13) 122(.2) C(8)=C(10)=C(12) </td <td>C(3) - C(6)</td> <td>1.32(5)</td> <td>C(6) - C(7)</td> <td>1.36(3)</td> <td></td>	C(3) - C(6)	1.32(5)	C(6) - C(7)	1.36(3)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C(\gamma) = C(3)$	1.44(.5)	C(8)C(9)	(150(2))	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(9) - C(10)	1.49(3)	C(9) - C(11)	1.57(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9) = C(12)	1.53(2)	C(12) - C(13)	1.37(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12) - C(20)	1.50(2)	C(13)- C(14)	1.49(2)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(14) C(15)	1.47(3)	C(15)-C(16)	1.36(3)	
C(17)-C(18) 1.37(3) C(18) C(19) 1.41(3) C(19)-C(20) 1.37(3) Cent-Mo 1.99 C(1)-MO-C(2) 81.1(9) C(1)-Mo-C(3) 78.0(9) C(2)-MO-C(3) 103.2(9) C(1)-Mo-C(13) 138.7(7) C(2)-MO-C(13) 72.0(9) C(3)-Mo-C(13) 77.8(7) Mo-C(1)-O(1) 177(2) Mo-C(2)-O(2) 175(2) Mo-C(3)-O(3) 199(2) C(5)-C(4)-C(8) 107(2) C(4)-C(5)-C(6) 107(2) C(5)-C(6)-C(7) 111(2) C(4)-C(5)-C(6) 107(2) C(7)-C(8)-C(19) 129(2) C(4)-C(8)-C(9) 127(2) C(8)-C(9)-C(11) 109(1) C(10)-C(9)-C(11) 110(2) C(8)-C(9)-C(12) 106(1) C(10)-C(9)-C(11) 110(2) C(8)-C(9)-C(12) 106(1) C(10)-C(12)-C(10) 110(2) C(13)-C(13) 127(2) C(10)-C(12)-C(10) 110(1) C(11)-C(13)-C(12) 106(1) C(10)-C(12)-C(10) 110(2) C(8)-C(12)-C(13) 127(2) C(10)-C(12)-C(10) 110(1) C(11)-C(13)-C(14) 107(1) C(10)-C(12)-C(13) 100(1)	C(15)-C(20)	1.41(3)	C(16)–C(17)	1.37(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17) - C(18)	1.37(3)	C(18)- C(19)	1.41(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19) - C(20)	1.37(3)	Cent-Mo	(- 0 -)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(1)-Mo-C(2)	81.1(9)	C(1)-Mo-C(3)	78.6(9)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(2)-Mo-C(3)	103.2(9)	C(1)MoC(13)	138,7(7)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(2)-Mo-C(13)	72.0(9)	C(3) - Mo - C(13)	77.8(7)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mo-C(1)-O(1)	177(2)	Mo-C(2)-O(2)	175(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo-C(3)-O(3)	179(2)	C(5) - C(4) - C(8)	107(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)C(5)C(6)	107(2)	C(5) - C(6) - C(7)	(11(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6) - C(7) - C(8)	110(2)	C(4) - C(8) - C(7)	104(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4) - C(8) - C(9)	127(2)	C(7) = C(8) = C(9)	129(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)-C(9)-C(10)	112(2)	$C(8) \sim C(9) - C(11)$	109(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)-C(9)-C(11)	110(2)	C(8) - C(9) - C(12)	106(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)-C(9)-C(12)	110(1)	C(11) - C(9) - C(12)	110(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)-C(12)-C(13)	122(2)	C(9) = C(12) = C(20)	127(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)-C(12)-C(20)	111(1)	Mo-C(13)-C(12)	119(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo-C(13)-C(14)	133(1)	C(12)-C(13)-C(14)	107(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)-C(14)-C(15)	107(1)	C(14)-C(15)-C(16)	133(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)C(15)C(20)	109(2)	C(16)-C(15)-C(20)	118(2)	
$\begin{array}{ccccccc} C(17)-C(18)-C(19) & 122(2) & C(18)-C(19)-C(20) & 119(2) \\ C(12)-C(20)-C(15) & 106(2) & C(12)-C(20)-C(19) & 134(2) \\ C(15)-C(20)-C(19) & 120(2) & Cent-Mo-C(1) & 116,7 \\ Cent-Mo-C(2) & 130,6 & Cent-Mo-C(3) & 124,8 \\ Cent-Mo-C(13) & 104,6 & \\ \end{array}$	C(15)-C(16)-C(17)	124(2)	C(16)C(17)C(18)	117(2)	
$\begin{array}{cccc} C(12)-C(20)-C(15) & 106(2) & C(12)-C(20)-C(19) & 134(2) \\ C(15)-C(20)-C(19) & 120(2) & Cent-Mo-C(1) & 116.7 \\ Cent-Mo-C(2) & 130.6 & Cent-Mo-C(3) & 124.8 \\ Cent-Mo-C(13) & 104.6 & & \\ \end{array}$	C(17)-C(18)-C(19)	122(2)	C(18) - C(19) - C(20)	119(2)	
C(15)-C(20)-C(19) 120(2) Cent-Mo-C(1) 116.7 Cent-Mo-C(2) 130.6 Cent-Mo-C(3) 124.8 Cent-Mo-C(13) 104.6 104.6 104.8	C(12)-C(20)-C(15)	106(2)	C(12)-C(20)-C(19)	134(2)	
Cent-Mo-C(2) 130.6 Cent-Mo-C(3) 124.8 Cent-Mo-C(13) 104.6 104.6 104.6	C(15)=C(20)=C(19)	120(2)	Cent-Mo-C(1)	116.7	
Cent-Mo-C(13) 104.6	Cent-Mo-C(2)	130.6	Cent-Mo-C(3)	124.8	
	Cent-Mo-C(13)	104.6			

Abb. 1. ORTEP-Darstellung eines Moleküls von $(\eta^5: \eta^1-C_5H_4CMe_2-C_9H_6)Mo(CO)_3$ (2a).

die Doppelbindung eindeutig zwischen C(12) und C(13) lokalisiert ist (1.37(3) Å).

Der Winkel am Brückenkopf-C-Atom ($\angle C(8)$ – C(9)–C(12) = 106(1)°) ist etwas kleiner als der entsprechende Winkel in der Ausgangsverbindung (η^5 -C₅H₄CMe₂C₉H₇)Mo(CO)₃Me (108.5(4)°).

Die Struktur des Komplexes (η^5 : η^1 -C₅H₄CMe₂C₁₃-H₈)W(CO)₃ ist in Abb. 2 abgebildet. Die Bindungsabstände und -winkel sind aus Tabelle 4 ersichtlich. Der W-C(14)-Abstand von 2.29(1) Å ist hier deutlich größer als der entsprechende Metall-C-Abstand von **2a** (2.20(2) Å) und erreicht fast die Länge der W-CH₃-Bindung in (η^5 -C₅H₄CMe₂C₉H₇)W(CO)₃Me (2.31(2) Å) [8]. Der Winkel am Brücken-C-Atom C(12)-C(9)-

Abb. 2. ORTEP-Darstellung eines Moleküls von $(\eta^5: \eta^1-C_5H_4CMe_2-C_{13}H_8)W(CO)_3$ (4b).

C(8) beträgt 108.1(8)° und ist etwas größer als der analoge Winkel im Komplex (η^5 -C₅H₄CMe₂C₁₃H₉)-W(CO)₃Me (107.6(4) Å). Offenbar ist die Länge der W-C(14)-Bindung mitbestimmend für die Größe dieses Winkels.

Der Zweikernkomplex **6** besitzt eine "langgestreckte" Struktur (Abb. 3), die dadurch mitverursacht wird, daß die (CH₂)₃-Kette die C₅H₄-Ringe und die C₁₃H₉-Substituenten auf maximalem Abstand hält. Die Bindungsabstände und -winkel sind in Tabelle 5 aufgeführt. Der W–W-Abstand beträgt 3.2257(6) Å und ist nur geringfügig größer als der W–W-Abstand der Stammverbindung $[(\eta^5-C_5H_5)W(CO)_3]_2$ (3.222(1) Å) [9]. Alle anderen Bindungslängen und -winkel liegen im erwarteten Bereich.

Abb. 3. ORTEP-Darstellung eines Moleküls von $[(\eta^5 - C_5H_4(CH_2)_3C_{13}H_9)W(CO)_3]_2$ (6).

170

4. Experimenteller Teil

Alle Arbeiten wurden routinemäßig unter Schutzgasatmosphäre und mit wasserfreien und frisch destillierten Lösungsmitteln durchgeführt.

Die Darstellung der Ausgangsverbindungen (η^{5} -C₅H₄CMe₂R)M(CO)₃Me (R = C₉H₇, C₁₃H₉; M = Mo, W) und (η^{5} -C₅H₄(CH₂)₃C₁₃H₉)W(CO)₃Me und des Komplexes (η^{5} : η^{1} -C₅H₄CMe₂C₁₃H₈)W(CO)₃ wurde erst kürzlich beschrieben [8]. 4.1. Darstellung der monomeren Komplexe $(\eta^5: \eta^1 - C_5H_4CMe_2C_9H_6)Mo(CO)_3$ (**2a**) und $(\eta^5: \eta^1 - C_5H_4C-Me_2C_{13}H_8)W(CO)_3$ (**2b**)

Allgemeine Vorschrift: 1 mmol des jeweiligen Isomerengemisches der Komplexe (η^5 -C₅H₄-CMe₂C₉-H₇)M(CO)₃Me (M = Mo, W) wird in 200 ml Toluol gelöst. Die gelbe Lösung wird bei 15°C 1 h lang bestrahlt (Hanovia L450W). Die orangebraune Reaktionslösung wird dann zur Trockne gebracht und der Rückstand mit einer Mischung aus Pentan/Toluol

TABELLE 4. Bindungsabstände (Å) und -winkel (°) für $(\eta^5: \eta^1-C_5H_4CMe_2C_{13}H_8W(CO)_3$ (4b) (Cent = Zentrum des Cyclopentadienylrings)

W-C(1)	1.96(1)	W-C(2)	1.97(1)
W-C(3)	1.99(1)	W-C(4)	2.32(1)
W-C(5)	2.30(1)	W-C(6)	2.32(1)
W-C(7)	2.34(1)	W-C(8)	2.362(9)
W-C(14)	2.29(1)	O(1)~C(1)	1.16(1)
O(2)–C(2)	1.17(1)	O(3)-C(3)	1.14(1)
C(4)–C(5)	1.42(2)	C(4)-C(8)	1.44(1)
C(5)-C(6)	1.41(2)	C(6)-C(7)	1.41(2)
C(7)–C(8)	1.40(1)	C(8)-C(9)	1.51(1)
C(9)-C(10)	1.52(1)	C(9)-C(11)	1.57(1)
C(9)-C(12)	1.57(1)	C(12)-C(13)	1.53(1)
C(12)–C(24)	1.52(2)	C(13)-C(14)	1.39(2)
C(13)-C(18)	1.42(1)	C(14)-C(15)	1.39(2)
C(15)-C(16)	1.38(2)	C(16)-C(17)	1.38(2)
C(17)-C(18)	1.40(2)	C(18)C(19)	1.46(2)
C(19) - C(20)	1.37(1)	C(19)-C(24)	1.40(2)
C(20)-C(21)	1.39(2)	C(21)–C(22)	1.39(2)
C(22)-C(23)	1.40(2)	C(23)-C(24)	1.41(2)
Cent-W	1.99		
C(1)-W-C(2)	110.9(5)	C(1)-W-C(3)	78.1(5)
C(2)-W-C(3)	80.4(5)	$C(1) \sim W - C(14)$	73.9(4)
C(2)-W-C(14)	71.8(5)	C(3)-W C(14)	129.4(5)
W-C(1)-O(1)	176(1)	W-C(2)-O(2)	178(1)
W-C(3)-O(3)	176(1)	C(5)-C(4)-C(8)	108(1)
C(4)-C(5)-C(6)	107(1)	C(5)-C(6)-C(7)	109(1)
C(6)-C(7)-C(8)	108(1)	C(4)-C(8)-C(7)	107.4(9)
C(4) - C(8) - C(9)	125.6(9)	C(7) - C(8) - C(9)	126.7(9)
C(8)-C(9)-C(10)	110.9(8)	C(8) - C(9) - C(11)	105.3(8)
C(10)-C(9)-C(11)	109(1)	C(8)-C(9)-C(12)	108.1(8)
C(10) C(9) - C(12)	111.4(8)	C(11)-C(9)-C(12)	111.5(8)
C(9)-C(12)-C(13)	113.1(8)	C(9)-C(12)-C(24)	116.8(9)
C(13)-C(12)-C(24)	102.6(8)	C(12)-C(13)-C(14)	130.4(9)
C(12)-C(13)-C(18)	108.5(8)	C(14)-C(13)-C(18)	121(1)
W-C(14)-C(13)	122.0(8)	W-C(14)-C(15)	122.1(9)
C(13)-C(14)-C(15)	116(1)	C(14) - C(15) - C(16)	124(1)
C(15)-C(16)-C(17)	120(1)	C(16) - C(17) - C(18)	118(1)
C(13)-C(18)-C(17)	121.1(9)	C(13) - C(18) - C(19)	110.0(9)
C(17)-C(18)-C(19)	128.9(9)	C(18)-C(19)-C(20)	129(1)
C(18)-C(19)-C(24)	107.9(9)	C(20)-C(19)-C(24)	123(1)
C(19)-C(20)-C(21)	118(1)	C(20)-C(21)-C(22)	120(1)
C(21)-C(22)-C(23)	121(1)	C(22)-C(23)-C(24)	119(1)
C(12)-C(24)-C(19)	111(1)	C(12)-C(24)-C(23)	131(1)
C(19)-C(24)-C(23)	118(1)	Cent-W-C(1)	121.7
Cent-W-C(2)	127.0	Cent-W-C(3)	115.4
Cent-W-C(14)	115.2		

(30/1) gelöst. Bei der anschließenden Säulenchromatographie über Kieselgel bei -20° C kann mit einer Mischung aus Pentan/Toluol (5/1) eine rote Fraktion eluiert werden, die den gewünschten Komplex **2a** bzw. **2b** enthält. Zum Kristallisieren der Produkte eignet sich eine Mischung aus Methylenchlorid und Hexan.

4.2. Darstellung von $[(\eta^5 - C_5 H_4 (CH_2)_3 C_{13} H_9) W(CO)_3]_2$ (6)

0.60 g (1.09 mmol) $(\eta^5 - C_5 H_4 (CH_2)_3 C_{13} H_9) W(CO)_3$ -Me werden in 200 ml Toluol gelöst. Die gelbe Lösung verfärbt sich bei der Bestrahlung mit UV-Licht im Verlauf von 2 h nach rot. Die Reaktionslösung wird auf eine mit Kieselgel/Pentan präparierte Chromatographiersäule gegeben. Das Produkt 6 kann mit Toluol als rote Fraktion eluiert werden. Zur Feinreinigung wird das Produkt aus einem Hexan/Methylenchlorid-Gemisch (5/1) kristallisiert.

4.3. Röntgenkristallographie

In Tab. 6 sind für die Komplexe **2a**, **4b** und **6** die Kristalldaten, die Intensitätsmessungen und die Daten zur Strukturverfeinerung zusammengefaßt.

Die Röntgenmessungen erfolgten mit Mo-K α -Strahlung (λ 0.71073 Å) bei 18°C auf einem Enraf-Nonius CAD-4-Diffraktometer mit Graphitmonochro-

TABELLE 5. Bindungsabstände (Å) und -winkel (°) für $[(\eta^5 - C_5H_4(CH_2)_3C_{13}H_9W(CO)_3]_2$ (6) (Cent = Zentrum des Cyclopentadienylrings)

W–Wa	3.2257(6)	W-C(1)	1.939(9)
W-C(2)	1.943(9)	W-C(3)	1.966(9)
W-C(4)	2.365(8)	W-C(5)	2.367(8)
W-C(6)	2.353(8)	W-C(7)	2.315(8)
W-C(8)	2.329(7)	O(1)-C(1)	1.182(9)
O(2)-C(2)	1.163(9)	O(3)-C(3)	1.167(9)
C(4)-C(5)	1.41(1)	C(4)–C(8)	1.43(1)
C(5)-C(6)	1.38(1)	C(6)-C(7)	1.42(1)
C(7)–C(8)	1.43(1)	C(8)-C(9)	1.51(1)
C(9)-C(10)	1.54(1)	C(10)–C(11)	1.54(1)
C(11)–C(12)	1.54(1)	C(12)–C(13)	1.51(1)
C(12)–C(24)	1.51(1)	C(13)–C(14)	1.35(1)
C(13)–C(18)	1.39(1)	C(14)-C(15)	1.38(1)
C(15)-C(16)	1.38(2)	C(16)-C(17)	1.36(2)
C(17)–C(18)	1.38(1)	C(18)-C(19)	1.47(1)
C(19)-C(20)	1.39(1)	C(19)–C(24)	1.40(1)
C(20)–C(21)	1.35(2)	C(21)-C(22)	1.35(2)
C(22)-C(23)	1.37(2)	C(23)–C(24)	1.39(1)
Cent-W	2.01		
Wa-W-C(1)	71.2(3)	Wa-W-C(2)	129.3(2)
C(1)-W-C(2)	78.4(3)	Wa-W-C(3)	72.1(2)
C(1) - W - C(3)	105.6(3)	C(2)-W-C(3)	78.6(4)
W-C(1)-O(1)	174.0(7)	W-C(2)-O(2)	177.0(8)
W-C(3)-O(3)	174.6(6)	C(5)-C(4)-C(8)	108.1(9)
C(4)-C(5)-C(6)	109.3(8)	C(5)-C(6)-C(7)	108.4(8)
C(6)-C(7)-C(8)	107.7(8)	C(4)-C(8)-C(7)	106.5(8)
C(4)-C(8)-C(9)	128.2(9)	C(7)-C(8)-C(9)	124.6(8)
C(8)-C(9)-C(10)	112.5(7)	C(9)-C(10)-C(11)	112.1(7)
C(10)-C(11)-C(12)	112.5(7)	C(11)-C(12)-C(13)	116.2(8)
C(11)-C(12)-C(24)	115.2(7)	C(13)-C(12)-C(24)	102.3(7)
C(12)-C(13)-C(14)	129.3(9)	C(12)-C(13)-C(18)	109.5(9)
C(14)-C(13)-C(18)	121(1)	C(13)-C(14)-C(15)	120(1)
C(14)-C(15)-C(16)	119(1)	C(15)-C(16)-C(17)	122(1)
C(16)-C(17)C(18)	119(1)	C(13)-C(18)-C(17)	120(1)
C(13)-C(18)-C(19)	110.1(9)	C(17)-C(18)-C(19)	130(1)
C(18)-C(19)-C(20)	133(1)	C(18)–C(19)–C(24)	106.7(9)
C(20)-(C(19)-C(24))	120(1)	C(19)-C(20)-C(21)	118(1)
C(20)-C(21)-C(22)	123(2)	C(21)-C(22)-C(23)	121(2)
C(22)-C(23)-C(24)	118(1)	C(12)-C(24)-C(19)	111.2(9)
C(12)-C(24)-C(23)	129(1)	C(19)-C(24)-C(23)	120(1)
Cent-W-Wa	116.8	Cent-W-C(1)	127.8
Cent-W-C(2)	113.9	Cent-W-C(3)	126.4

	$C_{20}H_{15}O_3M0 \cdot 0.5C_7H_8$ (2a)	$C_{24}H_{18}O_3W$ (4b)	$C_{48}H_{38}O_6W_2$ (6)
Farbe und Gestalt des Kristalls	orange, parallele Röhren	gelb, keilförmig	violett, parallele Röhren
Molmasse	445.35	538.26	1078.53
Raumgruppe	$P\overline{1}$	Cc	C2/c
Zellkonstanten			
a (Å)	9.923(8)	17.010(9)	18,934(9)
b (Å)	10.307(4)	11.094(5)	8.432(2)
с (Å)	10.577(4)	14,350(4)	25,901(9)
α (°)	85.46(3)		
β (°)	73.65(5)	134.25(5)	107.05(7)
γ (°)	76.14(5)		
Zellvolumen (Å ³)	1008	1939.7	3953
Moleküle pro Elementarzelle	2	4	4
$D_{\rm her.} ({\rm g}{\rm cm}^{-3})$	1.47	1.84	1.81
$\mu_{\rm ber}$ (cm ⁻¹)	6.63	63.2	62.1
Max. Kristallabmessungen (mm)	0.15 imes 0.23 imes 0.55	$0.05 \times 0.25 \times 0.28$	$0.23 \times 0.25 \times 0.28$
Scan Weite	$0.80 \pm 0.35 \tan \theta$	$0.80 \pm 0.35 \tan \theta$	$0.80 \pm 0.35 \tan \theta$
Standard Reflexe	$1\overline{4}\overline{2}, 1\overline{3}3, 303, 3\overline{3}2, 204, 1\overline{2}3$	800, 060, 006	600, 060, 0, 0, 18
Standard-Abweichung	±2%	+ 3.5%	+1.5%
Gemessene Reflexe	3537	1849	3829
Bereich von h, k, l	+11, +12, +12	$\pm 20, \pm 13, \pm 17$	$+22, +10, \pm 30$
		(auBer h + k = 2a + 1)	(auBer h + k = 2a + 1)
Beobachtete Reflexe $[F_0 \ge 5\sigma(F_0)]$	1409	1565	2202
Anzahl der variierten Parameter	239	257	253
Gewichte	$[\sigma(F_{\rm o})^2 + 0.0004(F_{\rm o})^2]^{-1}$	$[\sigma(F_{\alpha})^{2} + 0.0004(F_{\alpha})^{2}]^{-1}$	$[\sigma(F_{\rm o})^2 + 0.0004(F_{\rm o})^2]^{-1}$
GOF	0.88	0.82	0.50
$R = \sum F_{\alpha} - F_{c} / \sum F_{\alpha} $	0.077	0.024	0.030
R _w	0.084	0.030 (0.028, 0.036	0.033
		tur inverse Konfig.)	
Maximum der Restelektronendichte (e^{-} Å ⁻³)	0.8	4	1.0 (in der Nähe von W)

TABELLE 6. Kristalldaten und Zusammenfassung der Intensitätsmessungen und der Strukturverfeinerung

mator. Intensitätsdaten: $\theta/2\theta$ Meßbetrieb; $2 < 2\theta < 50^{\circ}$. Benütztes Computerprogramm: SHELX [10]. Lösung der Struktur: SHELXS [11]. Die Position der Wasserstoffatome wurden in berechneten Lagen, 0.95 Å vom gebundenen C-Atom angenommen (B 5.5 Å²). Die Verfeinerung der Nichtwasserstoffatome mit anisotropen Temperaturfaktoren lieferte die endgültigen Werte für R und R_w (siche Tab. 6). Weitere Einzelheiten zur Strukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56791, der Autoren und des Zeitschriftenzitats angefordert werden.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung und dem U.S. National Science Foundation Chemical Instrumentation Program für die Beschaffung des Diffraktometers (R.D.R.).

Literatur

- 1 H.G. Alt, Angew. Chem., 96 (1984) 752; Angew. Chem., Int. Ed. Engl., 23 (1984) 766.
- 2 D.B. Pourreau und G.L. Geoffroy. Adv. Organomet. Chem., 24 (1985) 249.
- 3 K.A. Mahmoud, A.J. Rest, H.G. Alt, M.E. Eichner und B.M. Jansen, J. Chem. Soc., Dalton Trans., (1984) 175.
- 4 R.J. Kazlauskas und M.S. Wrighton, J. Am. Chem. Soc., 102 (1980) 1727 und 104 (1982) 6005.
- 5 H.G. Alt, J. Organomet. Chem., 124 (1977) 167.
- 6 M.D. Rausch, T.E. Gismondi, H.G. Alt und J.A. Schwärzle, Z. Naturforsch. Teil B, 32 (1977) 998.
- 7 H.G. Alt, H.E. Maisel, J.S. Han und B. Wrackmeyer, J. Organomet. Chem., 399 (1990) 131.
- 8 H.G. Alt, J.S. Han und R.D. Rogers, J. Organomet. Chem., 445 (1993) 115.
- 9 R.D. Adams, D.M. Collins und F.A. Cotton, *Inorg. Chem.*, 13 (1974) 1086.
- 10 G.M. Sheldrick, SHELX76, a system of computer programs for X-ray structure determinations as locally modified, University of Cambridge, England (1976).
- 11 G.M. Sheldrick, SHELNS, in G.M. Sheldrick, C. Krüger und R. Goddard (Hrsg.), *Crystallographic Computing 3*, Oxford University Press, 1985, S, 175–189.